viernes, 3 de febrero de 2012

¿Cuántos cambios genéticos hacen falta para evolucionar?

Dos artículos publicados en Science analizan en sistemas microbianos los cambios genéticos que son necesarios para incorporar nuevos rasgos físicos ventajosos. 

En el primer experimento analizan la coevolución del virus bacteriófago lambda y su huésped habitual, la bacteria E. Coli, y en el segundo la respuesta de la E. Coli a cambios de temperatura. Bajo las condiciones adecuadas, los virus pueden desarrollar nuevas funciones rápida y repetidamente. 

La manera en la que su huésped evoluciona con ellos determina qué rasgos se manifiestan", asegura a SINC Justin Meyer, investigador de la Universidad del Estado de Michigan (EE UU) y autor de un artículo publicado en Science en el que examina las fuerzas evolutivas responsables de que emerja un nuevo rasgo en la especie. 

Para ello, Meyer y su equipo hicieron un experimento con el virus que infecta a la E. coli (llamado bacteriófago lambda) y la propia bacteria. "Hemos investigado cómo el virus desarrolla una nueva habilidad que le permite infectar a su huésped a través de un receptor que los virus ancestrales no podían usar", describen en el artículo. 

 Permitieron que el sistema microbiano evolucionara conjuntamente bajo las condiciones del laboratorio, y observaron que, tras cuatro mutaciones clave, el microorganismo desarrolló la capacidad de adherirse a un receptor bacteriano diferente. Dos de los cambios se repetían en todos los experimentos. Los investigadores también comprobaron que la bacteria respondía con ciertas mutaciones a las variaciones del virus, de manera que la evolución del bacteriófago lambda depende de su huésped bacteriano. Tan solo cuatro mutaciones genéticas.

Los científicos regularon en el laboratorio determinadas condiciones que causaron que la bacteria huésped desarrollara resistencia al agente infeccioso, regulando el receptor OmpB, lo que 'cerraba la puerta' al virus. En esas circunstancias, el microorganismo estaba forzado a encontrar una nueva vía de entrada: la proteína OmpF. "Los virus desarrollan muchas mutaciones para explotar un nuevo receptor. 

Todas la que encontramos en la secuenciación del genoma estaban en la proteína J, que es la llave para 'entrar' en su huésped", relata Meyer. Los investigadores replicaron el experimento y en 25 casos diferentes observaron que se había desarrollado la nueva función: podía entrar en la bacteria a través de un nuevo camino. 

Aunque los virus habían llegado a esta habilidad siguiendo caminos diferentes, en todos los casos se había producido las mismas cuatro clases de mutaciones. "Por tanto, hacen falta cuatro variaciones para desenvolver la nueva habilidad", afirma Meyer. 

 La selección natural en la innovación El rol de la selección natural en el proceso de adaptación es muy importante, pero en el surgimiento de innovaciones clave está menos claro, ya que cuando la selección fija ciertas variantes que mejoran las funciones ya existentes, puede limitar a las poblaciones a llegar a sus máximos locales y evitar que descubran nuevas habilidades. "La selección natural ayudó a fijar las mutaciones en la proteína de reconocimiento del huésped, lo que mejoró la capacidad del receptor original y preparó el camino para otras mutaciones que permiten la infección a través de un nuevo receptor", aseguran los investigadores. 

Tras este experimento, los investigadores aseguran: "El proceso de selección es importante para la evolución de una nueva función, aunque requiera muchas mutaciones". Segundo estudio En el segundo experimento los investigadores expusieron 155 poblaciones de E. Coli a altas temperaturas y observaron qué modificaciones del genoma provocaba esta condición durante 2.000 generaciones. 

Identificaron 1.331 mutaciones, la mayoría de ellas en los genes y en los complejos proteicos, y también unos pocos en los nucleóticos. "No podemos cuantificar la adaptación a las altas temperaturas como un rasgo, es un continuo en el que las cepas adaptadas responden mucho mejor a su entorno", asegura a SINC Olivier Tenaillon, autor del estudio e investigador de la Universidad de California (EE UU). "Hay un número ilimitado de rutas adaptativas en las mutaciones, pero solo unas pocas en las funciones", explica Tenaillon. "Dos cepas que han evolucionado independientemente comparten casi todas las unidades funcionales sin que tengan las mismas mutaciones". 

 A partir de estos resultados, los científicos aseguran que la interacción entre genes para una determinada característica -epistasia-, es un mecanismo fundamental de los organismos para adaptarse a su entorno.

fuente/La Flecha


Que es el ADN?


El ácido desoxirribonucleico, frecuentemente abreviado como ADN (y también DNA, del inglés deoxyribonucleic acid), es un tipo de ácido nucleico, una macromolécula que forma parte de todas las células. Contiene la información genética usada en el desarrollo y el funcionamiento de los organismos vivos conocidos y de algunos virus, y es responsable de su transmisión hereditaria.  

Desde el punto de vista químico, el ADN es un polímero de nucleótidos, es decir, unpolinucleótido. Un polímero es un compuesto formado por muchas unidades simples conectadas entre sí, como si fuera un largo tren formado por vagones. 

En el ADN, cadavagón es un nucleótido, y cada nucleótido, a su vez, está formado por un azúcar (ladesoxirribosa), una base nitrogenada (que puede ser adenina→A, timina→T, citosina→C oguanina→G) y un grupo fosfato que actúa como enganche de cada vagón con el siguiente. Lo que distingue a un vagón (nucleótido) de otro es, entonces, la base nitrogenada, y por ello la secuencia del ADN se especifica nombrando sólo la secuencia de sus bases. La disposición secuencial de estas cuatro bases a lo largo de la cadena (el ordenamiento de los cuatro tipos de vagones a lo largo de todo el tren) es la que codifica la información genética: por ejemplo, una secuencia de ADN puede ser ATGCTAGATCGC... En los organismos vivos, el ADN se presenta como una doble cadena de nucleótidos, en la que las dos hebras están unidas entre sí por unas conexiones denominadas puentes de hidrógeno. Para que la información que contiene el ADN pueda ser utilizada por la maquinaria celular, debe copiarse en primer lugar en unos trenes de nucleótidos, más cortos y con unas unidades diferentes, llamados ARN. 

Las moléculas de ARN se copian exactamente del ADN mediante un proceso denominado transcripción. Una vez procesadas en el núcleo celular, las moléculas de ARN pueden salir al citoplasma para su utilización posterior. La información contenida en el ARN se interpreta usando el código genético, que especifica la secuencia de los aminoácidos de las proteínas, según una correspondencia de un triplete de nucleótidos (codón) para cada aminoácido. Esto es, la información genética (esencialmente: qué proteínas se van a producir en cada momento del ciclo de vida de una célula) se halla codificada en las secuencias de nucleótidos del ADN y debe traducirse para poder funcionar. Tal traducción se realiza usando el código genético a modo de diccionario. El diccionario "secuencia de nucleótido-secuencia de aminoácidos" permite el ensamblado de largas cadenas de aminoácidos (las proteínas) en el citoplasma de la célula. Por ejemplo, en el caso de la secuencia de ADN indicada antes (ATGCTAGATCGC...), la ARN polimerasa utilizaría como molde la cadena complementaria de dicha secuencia de ADN (que sería TAC-GAT-CTA-GCG-...) para transcribir una molécula de ARNm que se leería AUG-CUA-GAU-CGC-... ; el ARNm resultante, utilizando el código genético, se traduciría como la secuencia de aminoácidos metionina-leucina-ácido aspártico-arginina-... Las secuencias de ADN que constituyen la unidad fundamental, física y funcional de la herencia se denominan genes. Cada gen contiene una parte que setranscribe a ARN y otra que se encarga de definir cuándo y dónde deben expresarse. 

La información contenida en los genes (genética) se emplea para generar ARN y proteínas, que son los componentes básicos de las células, los "ladrillos" que se utilizan para la construcción de los orgánulos u organelos celulares, entre otras funciones. Dentro de las células, el ADN está organizado en estructuras llamadas cromosomas que, durante el ciclo celular, se duplican antes de que la célula sedivida. 

Los organismos eucariotas (por ejemplo, animales, plantas, y hongos) almacenan la mayor parte de su ADN dentro del núcleo celular y una mínima parte en elementos celulares llamados mitocondrias, y en los plastos y los centros organizadores de microtúbulos o centríolos, en caso de tenerlos; losorganismos procariotas (bacterias y arqueas) lo almacenan en el citoplasma de la célula, y, por último, los virus ADN lo hacen en el interior de la cápsida de naturaleza proteica. 

Existen multitud de proteínas, como por ejemplo las histonas y los factores de transcripción, que se unen al ADN dotándolo de una estructura tridimensional determinada y regulando su expresión. Los factores de transcripción reconocen secuencias reguladoras del ADN y especifican la pauta de transcripción de los genes. 

El material genético completo de una dotación cromosómica se denomina genoma y, con pequeñas variaciones, es característico de cada especie. (  vía/wikipedia)




No hay comentarios:

Publicar un comentario

Todo análisis a un articulo, comentario o noticias. De acuerdo o no, le pedimos respeto y el uso de un léxico apropiado. Y, para poder publicar comentarios hay de darse de alta como miembro de este blog. Muchas gracias.